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Abstract

Foodborne pathogens can cause food poisoning and other illnesses, which have a significant im-

pact on food safety and human health and require rapid and efficient early detection methods.

Traditional laboratory techniques, such as culture and polymerase chain reaction methods, usu-

ally take a long time and do not meet the need for rapid detection, a background that has driven

the development of rapid, efficient research strategies. The recent discovery of clustered spaced

short palindromic repeats rule (CRISPR) and CRISPR-associated proteins (Cas) has thoroughly

become a hotspot in the field of detection. The fast, efficient nature of electrochemical biosen-

sors perfectly fits the requirements for rapid detection of foodborne pathogens in food and envi-

ronment.  This  paper  reviews  the  research  progress  of  electrochemical  biosensors  constructed

based on the CRISPR/Cas12a system for the detection of foodborne pathogens, evaluates the lim-

itations and challenges of biosensors for the detection of foodborne pathogens, and discusses fu-

ture possibilities.

Keywords: CRISPR/Cas12a; Gene Editing Technology; Foodborne Pathogens; Electrochemical

Detection
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Introduction

Pathogenic  microorganisms  are  microorganisms  that  can

cause metabolic disorders in the body and lead to disease, al-

so  known  as  pathogenic  bacteria.  Foodborne  pathogens  are

bacteria  that  cause  food  poisoning  or  foodborne  illnesses

through  the  presence  of  a  wide  range  of  bacteria  in  meat,

dairy, aquatic products, fruits and vegetables [1, 2]. Common

foodborne  pathogens  mainly  include  Staphylococcus  aureus

(S. aureus) [3], Escherichia coli (E. coli) [4], Listeria monocy-

togenes (L.  monocytogenes) [5],  Salmonella [6],  Clostridium

botulinum [7], Vibrio cholerae [8] and so on. Once infected,

they can lead to vomiting, nausea, diarrhea, and other symp-

toms  [6,  9],  which  can  be  life-threatening  in  severe  cases;

therefore, foodborne pathogens pose a serious and potentially

fatal risk to human health [10]. Common detection methods

for foodborne pathogens include traditional bacterial culture

assays [11, 12], enzyme-linked immunosorbent assay (ELISA)

[13], and polymerase chain reaction (PCR) [14]. However, tra-

ditional  bacterial  culture  detection  methods  have  disadvan-

tages  such  as  long  detection  time  and  low  efficiency.  Al-

though  ELISA  improves  the  detection  efficiency,  the  anti-

bodies  used  are  expensive  and  not  easy  to  store.  While  the

PCR method can quantitatively detect foodborne pathogenic

bacteria in food and environment, it requires complicated ex-

perimental  steps  and  is  prone  to  non-specific  amplification

leading to false positives.  Therefore, there is a need to estab-

lish a  rapid,  sensitive,  and accurate  detection method to  im-

prove  food  safety  and  maintain  human  health  as  well  as

public  health  safety.

Advanced detection methods (biosensors as well as gene edit-

ing  techniques)  offer  technological  innovations  for  efficient,

rapid, and easy detection of foodborne pathogens in food and

the  environment  compared  to  traditional  detection  tech-

niques. Among the many sensors, electrochemical biosensors

are  the  most  classical  and  widely  used  class  of  sensors  [15].

Electrochemical biosensors are a class of biosensors that con-

vert  captured  biological  signals  into  electrochemical  signals

and output  them in the  form of  current  or  potential  (Figure

1).  According  to  the  classification  of  the  output  signal,  they

can be classified into Cyclic Voltammetry (CV), Electrochemi-

cal Impedance Spectroscopy (EIS), Differential Pulse Voltam-

metry  (DPV),  etc  [16,  17].  Electrochemical  biosensors  have

been widely used in the detection of  biotoxins,  diseases,  and

foodborne pathogens due to their advantages of rapidity, effi-

ciency,  high  sensitivity,  and  portability  in  detection  [18-20].

In  addition,  CRISPR/Cas  (Clustered  Regularly  Interspaced

Short  Palindromic  Repeats,  CRISPR)  and  its  associated  pro-

tein  (Cas)  gene  editing  system's  unique  way  of  recognizing

sites and cutting them. This can improve the high specificity

and sensitivity of the biosensor [21, 22]. For example, Lu et al.

reported  the  research  method  of  CRISPR/Cas  system  for

SARA-CoV-2,  with  the  detection  time  reduced  to  30  min

[23], which provided a research direction for the rapid detec-

tion of SARA-CoV-2. Also based on the CRISPR/Cas system,

Tan  et  al.  combined  with  recombinant  enzyme  polymerase

amplification (RPA) to successfully construct a detection plat-

form for 12 common respiratory pathogens [24]. The method

does  not  cross-react  with  other  bacteria  or  viruses,  ensuring

the  accuracy  and efficiency  of  the  experiment.  These  studies

demonstrate  the  advantages  of  the  CRISPR method for  high

specificity  and  sensitivity  in  detection.  Therefore,  the  selec-

tion of a highly specific research strategy in combination with

the CRISPR/Cas system is crucial for the development of elec-

trochemical biosensors for the rapid and efficient detection of

foodborne pathogenic bacteria.

Foodborne Pathogen

Staphylococcus Aureus

Staphylococcus spp. is the most common group of gram-posi-

tive cocci among septic bacteria and is widely found in nature

as  well  as  on the  surface  of  the  skin  of  humans  and animals

[25, 26]. Most of these genera are not pathogenic, whereas Sta-

phylococcus  aureus  (S.  aureus)  is  more  pathogenic,  causing

septic and toxoplasmic illnesses, and it is one of the most com-

mon  foodborne  pathogens  [27].  In  recent  years,  there  has

been a rapid increase in drug-resistant strains, especially me-

thicillin-resistant Staphylococcus aureus (MRSA) has become

one of the most common causative organisms of nosocomial

infections  [28,  29].  Once  S.  aureus  invades  the  body,  it  can

cause localized infections, visceral infections, sepsis, and sep-

ticemia [30, 31]. In addition, the toxins produced by S. aureus
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can cause food poisoning and toxic shock syndrome [32, 33].

Figure 1: Schematic Diagram of CRISPR/Cas Detection of Bacterial Targets

Escherichia Coli

Escherichia coli (E. coli) is a common gram-negative bacillus

that is a member of the intestinal flora [34]. Most strains of E.

coli  are  part  of  the  normal  intestinal  flora  and  are  usually

transmitted through food, water, or contact [35]. E. coli is cat-

egorized into two main groups according to whether they pro-

duce toxins or not: enterotoxin-producing E. coli and non-en-

terotoxin-producing  E.  coli.  Enterotoxin-producing  E.  coli

are important pathogens for infections in humans and a wide

range of animals,  and they can lead to gastrointestinal infec-

tions, causing symptoms such as diarrhea, vomiting, abdomi-

nal pain, and fever [36, 37]. Certain pathogenic strains can al-

so  cause  urinary  tract  infections,  respiratory  tract  infections,

and  other  infections  that  can  lead  to  death  in  severe  cases

[38], E. coli is also a safety indicator for water quality monitor-

ing [39].

Salmonella

Salmonella is  a group of gram-negative bacilli  that parasitize

the intestinal tract of humans and animals [40], and Salmonella

spp. are pathogenic to humans, including Salmonella typhi,

Salmonella  typhimurium,  and  Salmonella  enterica[41,  42].

Human infections due to the consumption of food contami-

nated with Salmonella, mostly meat products, are the most im-

portant factor in the development of gastroenteritis that re-
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sults and are therefore of great importance in public health

and food safety [43]. Its main pathogenesis is the invasion of

the intestinal mucosa by Salmonella and enterotoxins, with a

short incubation time and rapid onset, and the main symp-

toms are fever, nausea, and watery discharge [44]. Elderly peo-

ple and those with weaker resistance will be rapidly dehydrat-

ed, leading to shock and in severe cases, death due to renal

failure [45].

Listeria Monocytogenes

Listeria  monocytogenes  (Listeria),  a  group  of  gram-positive

foodborne zoonotic pathogens, is widely distributed in nature

[46]. There are 10 species in the genus Listeria, and only Liste-

ria  monocytogenes  (L.  monocytogenes)  is  pathogenic  to  hu-

mans,  causing  listeriosis,  which  is  mainly  manifested  as

meningitis and meningoencephalitis [47, 48]. The pathogenic

mechanism relies mainly on its toxin, Listeria monocytogenes

lysin  O,  which  causes  intestinal  diseases  and  septicemia  by

contaminating foods  such as  cooked meat  products  and soft

cheeses [49]. The main infected populations are neonates, elder-

ly pregnant women, and immunocompromised individuals,

resulting in preterm labor, stillbirth, or neonatal infections

[50, 51].

CRISPR/Cas12-Based Electrochemical
Biosensors

CRISPR/Cas Gene Editing System

The CRISPR/Cas gene editing system is a nucleic acid-based

adaptive immune system present in numerous archaebacteria

that  defends  against  phages,  plasmids,  and  other  foreign

DNA elements by invading nucleic acids, DNA, or RNA [52].

The  CRISPR/Cas  system  functions  in  a  three-step  process

(Figure  2):  adaptation,  expression,  and interference.  When a

foreign virus or nucleic acid sequence invades, the CRISPR/-

Cas system recognizes and edits the gene sequence attacking

the invasion in a CRISPR array. When a secondary infection

occurs, the integrated gene sequence is transcribed into a ma-

ture crRNA, which cuts the target sequence to target inactiva-

tion  under  the  specific  recognition  of  Cas  [53,  54].  CRISPR

systems can be classified according to structural composition

into CRISPR systems can be categorized into six types based

on their structural composition: Class I (types I, III, IV) con-

sists  of  multiple  Cas  proteins  and crRNAs that  form a  com-

plex to perform cleavage in concert; Class II (types II, V, VI)

consists of a single Cas protein that performs cleavage on its

own  [55].  Compared  to  class  I,  class  II  Cas  proteins  require

only one protein to exert cleavage and accessory cleavage ac-

tivities  and  play  important  roles  in  DNA  or  RNA  editing,

tracking,  knockdown,  and  nucleic  acid  detection.  The  main

ones widely used in the whole gene editing system are CRIS-

PR/Cas9, CRISPR/Cas12, and CRISPR/Cas13, and this paper

focuses  on  the  overview  of  the  electrochemical  biosensor  of

CRISPR/Cas12a  for  the  detection  of  foodborne  pathogenic

bacteria.

Figure 2: CRISPR/Cas System Adaptive Immune Response. A) Adaption, B) Expression, C) Interference
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Crispr/Cas12

Cas12 is one of the prokaryotic deoxyribonucleic acids of the

CRISPR/Cas protein family, which belongs to the class II type

V  RNA-guided  CRISPR/Cas  effectors  [56]  and  is  also  an

RNA-guided  and  DNA-targeted  nucleic  acid  endonuclease.

The family of Cas12 proteins includes the members of Cas12a

-  Cas12f,  whereas  the  widely  used  ones  are  Cas12a  and

Cas12b, among these two proteins, the former is more widely

used [57].

Trans-Cleavage and Cis-Cleavage of Cas12

Cas12a is also known as Cpf1 protein, unlike Cas9a which re-

quires two nucleic acid structural  domains to exert its  cleav-

age activity, Cas12a can perform cis-cleavage and trans-cleav-

age  [58].  Cis-cleavage:  The  crRNA-Cas12a  binary  complex

scans double-stranded DNA and, upon finding PAM (typical-

ly  5′-TTTN-3′),  the  DNA  proximal  to  PAM  is  locally

unzipped to form an R-loop. The RuvC domain sequentially

cleaves the non-target strand (NTS) and target strand (TS) ap-

proximately 18 nt downstream of the PAM, producing a 5′-
sticky-ended dsDNA fragment. Trans-cleavage: After cis-clea-

vage is completed, Cas12a remains in a “highly active” confor-

mation; at this point, the RuvC active site is fully exposed, en-

abling rapid and indiscriminate cleavage of any single-strand-

ed DNA probe of length ≥8 nt in the reaction system [59].

Based on the trans-cleavage activity of Cas12a, Li et al. com-

bined the activation of DNA-AuNPs (gold nanoparticles) nan-

otechnology with the CRISPR/Cas12a system to develop a sen-

sitive  Cas12a/crRNA-based  nano-immunosorbent  assay

(Nano-CLISA) platform, which was successfully realized for

the detection of carcinoembryonic antigen [60]. In addition,

the cleavage activity of Cas12a maintains high efficiency at

low temperatures, which may be beneficial for specific applica-

tion scenarios (e.g., plant gene editing) [61, 62]. An et al. used

the cleavage activity of Cas12a to knock out multiple targets

of  octahydroxylycopene desaturase gene 8 in poplar,  a  re-

search strategy that provides a research direction for facilitat-

ing genetic studies in forest trees [63]. The CRISPR/Cas12a

system is widely used in gene tracking [64], disease detection

[65, 66], and biosensing [67, 68].

CRISPR/Cas12-Based Electrochemical Biosensors

The joint research strategy of the CRISPR/Cas12 system and

electrochemical biosensors has been shown to improve the se-

lectivity  and  specificity  of  detecting  target  analytes,  which  is

mainly attributed to the CRISPR/Cas12-specific trans-cutting

activity with crRNA design [69]. In CRISPR/Cas12-based elec-

trochemical  biosensors,  an  electrochemical  signaling

molecule,  e.g.,  ferrocene  (Fc),  methylene  blue  (MB),  labeled

at  one end of  the ssDNA and immobilized on the surface of

the  electrode,  acts  as  a  bioreceptor,  called  a  signaling  probe.

This probe cuts after the activation of CRISPR/Cas12 trans--

cutting  activity  is  activated,  the  electrochemical  signaling

molecule moves away from the electrode surface, and the elec-

trochemical  signal  is  altered as a way to achieve detection of

the target.

In  addition,  the  use  of  amplification  technology  can  signifi-

cantly  amplify  the  biological  signals,  improve  the  sensitivity

of the assay, and reduce the detection limit. Qing et al. report-

ed  the  research  strategy  of  rolled-circle  amplification  (RCA)

in combination with  CRISPR/Cas12a,  which was  realized by

square-wave pulsed voltammetry (SWV) for the detection of

prothrombin  [70].  This  method  combines  the  advantages  of

efficient amplification of RCA and rapid specificity of CRIS-

PR/Cas system to achieve precise detection of thrombin with

a  detection  limit  as  low  as  1.26  fM.  Also  in  the  strategy  of

RCA with CRISPR/Cas12a, Qing et al. constructed a DNA log-

ic circuit detection platform with DNA input, and the detec-

tion  limits  of  microRNA,  fine  virus  B19  DNA  and

adenosine-5'-triphosphate  with  detection  limits  of  0.83  aM,

0.52 aM, and 0.46 pM, respectively [71]. In photoelectrochem-

ical  biosensors,  the  CRISPR/Cas12a  system  also  performs

well, and Shen et al. constructed a photoelectrochemical fluo-

rescence strategy for miRNA detection by utilizing the "cis--

cutting  activity"  and  "trans-cutting  activity"  of  Cas12a  [72].

The  following  year,  Shen  et  al.  combined  CRISPR/Cas12a

with a  multi-amplification system and reported a  photoelec-

trochemical colorimetric strategy for miRNA detection [73].
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CRISPR/Cas12a-Based Driven Electrochemical Detec-
tion of Foodborne Pathogenic Bacteria

The  advantages  of  CRISPR/Cas12a-based  electrochemical

biosensors  in  improving  selectivity  and  specificity  and  their

applications  in  disease  markers,  environmental  health,  and

food  safety  have  attracted  the  attention  of  many  researchers

around  the  world,  especially  for  the  detection  of  foodborne

pathogens. For example, Huang et al. developed a novel elec-

trochemical biosensor based on jumping rolled-ring amplifi-

cation (SRCA) coupled with CRISPR/Cas12a system for accu-

rate detection of S. aureus [74]. The strategy uses methylene

blue as the electrochemical signaling molecule and -SH modi-

fied signaling reporter probe (SH-ssDNA-MB) immobilized

on the surface of a glassy carbon electrode modified with gold

nanoparticles via Au-S bond. When the solution to be tested

contains Staphylococcus aureus, the double-stranded DNA ob-

tained by SRCA can be specifically recognized by Cas12a/crR-

NA complex and in this way activates the Cas12a trans-cutt-

ing activity, which specifically recognizes and cleaves SH-ssD-

NA-MB, resulting in the MB moving away from the electrode

surface and the decrease of the electrochemical signals (Fig-

ure 3). Under optimal conditions, the detection limit for S. au-

reus was 3 CFU/mL, respectively.

Figure 3: The Principle of “An Electrochemical Biosensor for the Highly Sensitive Detection of Staphylococcus Aureus Based

On SRCA-CRISPR/Cas12a”

In  contrast,  Bonini  et  al.  combined  the  CRISPR/Cas12a  sys-

tem with electrochemical impedance spectroscopy (EIS) mea-

surements to develop a label-free biosensing assay for the de-

tection of E. coli and S. aureus [75]. This research strategy pro-

vides a research idea for the construction of a biosensing de-

vice based on CRISPR/Cas12a label-free impedance measure-

ment. Similarly for E. coli, Bu et al. used CRISPR/Cas12a cas-

cade  signal  amplification  and  primer  exchange  reaction

(PER) to detect E. coli O157:H7 [76]. The functional DNA ap-

tamer triggers the PER hairpin structure only when the target

pathogen  is  detected,  extending  the  primer  to  long  single-s-

tranded DNA (ssDNA), which then activates the cleavage ac-

tivity of Cas12a on ssDNA modified on the Au electrode, re-

sulting in a reduced electrochemical signal with a limit of de-

tection of 19 CFU/mL. To reduce the limit of detection for E.

coli.  Chen  et  al.  proposed  a  CRISPR/Cas12a  combined  with

Immuno-Rolling Circle Amplification research strategy [77].

The strategy is a sandwich immunoassay on magnetic beads,

Immune -  RCA generates  E.  coli  O157:H7 specific  aptamers

and long ss DNA targeting repetitive sequences. Thus, in the

presence  of  E.  coli  O157:H7,  CRISPR/Cas12a  trans-cleavage

activity  is  activated,  and  the  MB-hairpin  DNA probe  on  the

surface  of  the  modifying  electrode  is  cleaved  by  cutting  and

cleaving. The peak current was altered. The detection limit of
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E.coli was successfully reduced to 10 CFU/mL by the amplifi-

cation system.

Liu  et  al.  on  the  other  hand,  developed  an  electrochemical

biosensor for the detection of the pathogenic bacterium Sal-

monella typhimurium (S. typhimurium) by combining the hy-

bridization chain reaction (HCR) with CRISPR/Cas12a (Fig-

ure 4) [78]. Autonomous crossover opening of the functional

hairpin DNA structure of HCR produces a single length of ds

DNA consisting of several ss DNAs DNA, the ds DNA can

then  activate  the  trans-cutting  activity  of  CRISPR/Cas12a

through multiple binding sites to cleave the signaling probe

modified on the electrode surface, resulting in the transfer of

electrochemical signaling molecules and a change in electro-

chemical signaling. Polymeric ds DNA of HCR is immobil-

ized on Dynabeads (DBs) via Salmonella typhimurium nucle-

ic acid aptamers and is released from DBs released from DBs.

The established method can selectively and sensitively quanti-

fy Salmonella typhimurium in samples with a detection limit

of 20 CFU/mL. In addition to this, Zheng et al. proposed a re-

search strategy based on the combination of Jumping Rolling

Circle  Amplification  (SRCA)  and  CRISPR/Cas12a  system

[79]. Signal amplification was achieved by rapid SRCA ampli-

fication and the trans-cutting activity of Cas12a. As a result,

non-specific amplification is eliminated, reducing the false--

positive rate of the assay. With this strategy, the biosensor

showed a linear range of 5.8 fg/μL - 5.8 ng/μL based on the ra-

tio of Fc and MB current signals (IFc/IMB), with detection of

Salmonella as low as 2.08 fg/μL.

Figure 4: Schematic Illustration of the Electrochemical Biosensor for Detecting S. Typhimurium

Li  et  al.  introduced  the  trans-cutting  activity  of  CRISPR/-

Cas12a  into  an  electrochemical  biosensor  (E-CRISPR)  and

combined it with recombinant enzyme-assisted amplification

(RAA) to establish a cost-effective, specific, and ultrasensitive

method  [80].  As  shown  in  the  schematic  diagram  of  Figure

5A: Listeria monocytogenes DNA was extracted for RAA am-

plification to generate a large amount of ds DNA, which was

subsequently combined with CRISPR/Cas12a-crRNA to acti-

vate the trans-cutting activity of CRISPR/Cas12a. When Liste-

ria monocytogenes was present in the solution to be tested, the

trans-cutting activity of CRISPR/Cas12a was activated to cut

ss DNA on the electrode surface, and the MB modified on the

tip was far away from the electrode surface, and the electro-

chemical signals were significantly altered, thus realizing the

detection of Listeria monocytogenes, which was detected at a

detection limit of 26 CFU/mL for this biosensor.
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Figure 5: Principle of the RAA-Based E-CRISPR Biosensor for Detecting L.Monocytogenes

In addition to the sensors described above, there are research strategies based on the CRISPR/Cas system for the detection

of foodborne pathogens.

Table 1: Biosensor based on the CRISPR/Cas system for the detection of foodborne pathogens

Detection Method Target CRISPR/Cas LOD Reference

Electrochemical biosensor E. coli Cas12a 5.02 CFU/mL [81]

Electrochemical biosensor S. typhimurium Cas12a 55 CFU/mL [82]

Electrochemiluminescence Salmonella Cas12a 37 CFU/mL [83]

Fluorescence S. aureus Cas12a 1.50 CFU/mL [84]

Photothermal S. aureus Cas12a 1 CFU/mL [85]

Colorimetric S. aureus Cas12a 5 CFU/mL [86]

Fluorescence S. aureus Cas12a 4 × 103 fg/μL [87]

Fluorescence S. aureus Cas12a 10 copies [88]

Flow test strips S. aureus Cas12a 10 - 100 copies [88]

Single-tube detection S. aureus Cas12a, Cas13a 5 copies [89]

Fluorescence E. coli Cas9 40 CFU/mL [90]



CEOS Journal of Microbiology

CEOS Publishers Volume 3 Issue 101

www.ceospublishers.com | 9 |

Fluorescence E. coli Cas12a 1 CFU/mL [91]

Lateral flow E. coli Cas12a 100 CFU/mL [91]

Lateral flow E. coli Cas12a 1 CFU/mL [92]

One-pot E. coli Cas12a 1 CFU/mL [93]

G-Quadruplex S. enterica Cas12a 20 CFU/mL [94]

Fluorescence S. enterica Cas12a 24.9 CFU/mL [84]

Fluorescence S. enterica Cas12a 5 CFU/mL [95]

Fluorescence S. enterica Cas12a 6 CFU/mL [96]

Fluorescence Salmonella Cas12a 8 CFU/mL [97]

Fluorescence Salmonella Cas12a 20 CFU/mL [98]

Fluorescence Salmonella Cas12a 50 CFU/mL [99]

PGMs-CRISPR Salmonella Cas12a 5 CFU/mL [100]

One-pot Salmonella Cas12a 1 CFU/mL [101]

Magnetic nanoparticles Salmonella Cas12a 130 CFU/mL [102]

Fluorescence S. enterica Cas13a 1 CFU/mL [103]

One-pot S. enterica Cas13a 100 copies [104]

Fluorescence L. monocytogenes Cas12a 2.3 CFU/25g [105]

Fluorescence L. monocytogenes Cas12a 33.7 CFU/mL [106]

Cas12a-MA L. monocytogenes Cas12a 33.7 CFU/g [107]

Inclusion

CRISPR/Cas12a-based  electrochemical  biosensors  provide

rapid and precise results in the detection of foodborne patho-

genic bacteria, which will help maintain food safety. Howev-

er, electrochemical biosensors based on the CRISPR/Cas sys-

tem still  have shortcomings, such as the simultaneous detec-

tion of multiple bacteria and their typing cannot achieve accu-

rate  detection.  And  the  biggest  challenge  is  whether  it  has

good  accuracy  for  clinical  sample  detection,  which  has  little

data in the known literature. In future research, photoelectro-

chemical research strategies can be developed to enhance the

detection of other foodborne pathogens, biotoxins, and other

pathogenic  substances,  and  the  application  of  the  CRISPR/-

Cas system for targeted detection needs to be further expand-

ed.

CRISPR-Based  Electrochemical  Biosensors  Are  Still
In  the  “Laboratory-To-Pilot”  Transition  Phase  and
Have Not Yet Entered Large-Scale Regulatory Appro-
val  or  Industrial  Implementation.  This  Can Be Sum-
marized In The Following Three Points:

1.  The  regulatory  framework  is  not  yet  fully  established,  but

the  core  platform  has  already  taken  shape  as  a  “reviewable”

prototype: Although there are currently no approved cases of

CRISPR-E  (electrochemical)  sensors  in  China,  the  National

Medical Products Administration (NMPA) has initiated a spe-

cial discussion on CRISPR-related products under the “Tech-

nical Review Guidelines for the Registration of In Vitro Diag-

nostic  Reagents,”  with the expected release of  review criteria

for CRISPR-POCT by the end of 2025.

2. Technical bottlenecks are being addressed one by one, and

conditions for industrialization are becoming increasingly ma-
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ture.

3.  The first  “near-commercialization” scenarios are targeting

high-value niche markets.

CRISPR electrochemical biosensors have not yet been widely

commercialized  like  lateral  flow  antigen  test  strips,  but  they

have  reached  the  “convergence  point  of  technology,  regula-

tion, and commerce.” Once stability, multiplex detection, and

standardized quality control systems are fully established, the

first approved CRISPR-electrochemical POCT product is ex-

pected to emerge by 2026-2027.
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